
Issues Raised by Readers

Readers have asked questions about various aspects of the statistical tests described in the text
and the Monte-Carlo Permutation Test document.  I now address several of these issues.

Note that these notes are my own opinion.  I cannot and will not be held responsible for losses
due to errors or omissions.  You accept all liability for your use or consideration of these
opinions.

Using P-Values to Judge the Relative Performance of Trading Systems

“How do I distinguish between systems that have different p-values, or that all have a p-value of
zero?  Which one is better?”

This question concerns me, because it implies that the reader wants to use a p-value to judge the
relative quality of a model.  This is a common and serious error.  A p-values does not measure
performance.  It measures the probability that a truly worthless model could have performed as
well as the model being tested purely by good luck.  This probability is heavily dependent on the
variation among trade returns as well as the number of trades in the dataset.  I would have no
trouble producing a trading system that has an average annual return of just one percent, but has a
p-value of nearly zero on any reasonable statistical test.  I could then produce a system with an
annual return of 15 percent and that has a large, insignificant p-value.  To do this, I would only
need to manipulate the number of cases or the variation in trade returns.  Thus, you must never
use a p-value to judge the relative effectiveness of a trading system.  A small p-value is a
necessary but not sufficient condition for a good trading system.

Selecting the Dataset for a Statistical Test

“My dataset has a return that is tremendously better than random systems generated in a Monte-
Carlo Permutation Test, and its p-value is zero.  I am sure that I have not overfitted the
parameters in my model.  Is a p-value of zero reasonable?”

When I hear this statement, I become suspicious that in-sample leakage has occurred.  The
dataset tested must be obtained from COMPLETELY out-of-sample data.  By this, I mean that
the data on which you tested your system is from a time period that has no overlap whatsoever
with the time period in which you developed or confirmed proper operation of your model.  You
must not have even used this dataset to decide on which of several competitors or variations you
choose.  It must be totally virgin, never seen before the test is performed.  If it has played any role
whatsoever in the development of the trading system, any statistical test of its performance will
exaggerate significance, often to an enormous degree.  In this situation, you must use one of the
methods described on Page 32 of the MC document, “Permutation Tests During Training.”



So, assuming that your results are from a totally independent test set, let’s think about what they
say.  As part of the MC test, you generated a huge number of random systems and computed the
return of each.  You then checked the return of the best of this multitude of random systems, the
luckiest of the lucky, and you noted that it had a much lower return than your developed system. 
Think about what this means.  Your system has fabulous performance, much better than the
return of an extraordinarily lucky but ultimately worthless system.  This is truly incredible.  You
have a real winner here!  I claim that any statistical test that fails to profoundly reject the null
hypothesis here is a ridiculously weak test.  Of course, there is still the unlikely but possible
caveat of the dual correlation problem discussed in the next section.  But this can be dispelled by
collecting more batches of out of sample data and trying the test again.  Since the correlation
problem exaggerates both tails, if this is the cause of the tiny p-value it will probably make itself
known soon enough when an extraordinarily bad system appears.

The Monte-Carlo Permutation Test in Extreme Serial Correlation

“The market I am testing has extreme serial correlation.  My trend-following system is able to
capture many of these trends, and it performs well.  However, when I do the permutations for the
MC test, the trial position vectors are too random, so they do not benefit from being able to take
advantage of contiguous long or short positions.  The result is that my model’s performance is
much better than even the best of the random null hypothesis vectors, producing a p-value of
zero.  This would seem to be a weakness of the MC test in a serially correlated market.”

This is discussed twice in the MC paper (Page 9 and Page 31).  However, I will elaborate even
further, since this is an important and potentially confusing issue.  First, understand that this is as
much a philosophical question as a rigorous mathematical question.

Here is the dangerous situation that I envision.  (There may be more.  This is the only one I can
think of right now.)  I will henceforth call this the dual correlation problem. Suppose we have a
system for generating positions that are random and unrelated to the market data.  Also suppose
that its positions are inherently correlated.  For example, one may roll a pair of dice.  If a seven
comes up, the next four positions are all long, and so forth.  This system is obviously worthless. 
Now suppose we apply this serially correlated position vector to a serially correlated market.  It
would have an unusually high probability of getting lucky, with a bunch of longs lining up with a
bunch of positive raw returns, and so forth.  It would have an equally unusually high probability
of being very unlucky, with strings of positions lining up with strings of the exact opposite
signed returns.  Thus, the distribution of returns would be unnaturally extended at both the
winning and the losing ends.  These broad tails would balance each other, producing a net
expected gain of zero.  Nonetheless, the broad right tail would result in excessive probability of
rejecting the null hypothesis, a dangerous situation.

But what if the serially correlated positions result from an intelligent look at the serially
correlated raw market returns?  Certainly, the intelligent response to a serially correlated market
is a serially correlated position vector.  So in this case, we should (I believe) credit the
intelligence.



Thus, the fundamental question in the dilemma comes down to this:  If the serially correlated
positions are an appropriate response to the serially correlated market, we want to credit this
intelligence and reject the null hypothesis.  To do otherwise would cripple the test, perhaps
rendering it nearly powerless.  But if the serial correlation in the positions is an artifact of the
design of the system that is not related to the serial correlation in the market, we do not want to
credit it.  To do so would increase the likelihood of erroneously rejecting the null hypothesis, a
serious error.  Unfortunately, we often do not know the true nature of the situation, so we have to
weigh the price and benefit of each alternative and choose wisely, being ready to accept the
consequences of a bad choice.

It is important to note that this phenomenon is not a problem with only the Monte-Carlo
permutation test.  The deeper fundamental problem is that when a serially correlated but
otherwise random position vector is mated to a serially correlated market vector, the result will
be a preponderance of very lucky and very unlucky systems.  This is a problem with the data, not
the test.  Different tests will reflect the dual-correlation problem in different ways:

In the Monte-Carlo Permutation Test, most random permutations result in position
vectors that do not have the serial correlation necessary to significantly overlap serial
correlation in the market.  The result is that the null distribution is narrower than what
would be expected in the real-life population, a serious violation of the permutation
principle.  Hence, the null hypothesis will be rejected too often.  A crude fix is to limit the
random permutations to those having serial correlation similar to that of the test system. 
This is discussed later.

In the ordinary t-test, a fundamental assumption is that the variance of the mean of a set
of n independent observations is the original variance divided by n. But in the dual-
correlation problem, the returns themselves are serially correlated.  If a set of observations
is correlated this way, the variance of the mean does not drop by a factor of n. It drops
more slowly.  The result is that the t-score is inflated, resulting in excessive rejection of
the null hypothesis.  A crude fix is to estimate the serial correlation and apply a simple
formula to correct the variance estimate.  This is risky.

In a bootstrap test of data having the dual correlation problem, the individual bootstrap
replications will have a distribution that is too narrow relative to the population
distribution of the test statistic, due to the clustering of serially correlated observations. 
The result is that the test statistic will lie too far outside the null distribution, causing
excessive rejection of the null hypothesis.  In fact, if you look at Figure 2 in the MC
document, which displays the results of a simulation of this problem, you will see that the
bootstrap test is actually more adversely impacted than the MC test.  There do exist some
bootstraps that can partially compensate for serial correlation, and I have not tested them
in this scenario, but I strongly suspect that they would not provide any material help here. 
The process of estimating serial correlation is risky, and these tests do have significantly
lower power than the normal bootstrap.



Here is another way of looking at the dilemma.  Suppose we have a market that has strong serial
correlation.  A successful trading strategy will probably have two characteristics:

1) Its positions will have strong serial correlation so as to match the extended trends

2) Among all possible similarly correlated systems, it will be superior.

The straightforward MC permutation test, as well as other tests like the t-test and the bootstrap,
are sensitive to both of these characteristics.  In other words, the null hypothesis is that the
system is worthless, versus the alternative that something is making it outperform a worthless
system.  This something may be serial correlation, or superior intelligence among serially
correlated systems, or both (serial correlation created as the result of an intelligent model).  In the
likely event that the observed positions are serially correlated, do you really want to limit your
statistical test to the second characteristic, relative intelligence, discounting the possibility that
the observed serially correlated positions are actually an intelligent response to the serially
correlated market?

You might be able to modify the MC test to force it to employ a null hypothesis distribution
consisting of only position vectors having serial correlation comparable to that of the test system. 
This could be done by rejecting unsatisfactory permutations.  This will, of course, extend the
width of the null distribution as unusually lucky and unlucky systems replace many middling
systems.  This will result in a more conservative test, reducing the impact of the dual correlation
problem discussed above.  At the same time, it will reduce or eliminate the credit given to
characteristic 1 above, serially correlated positions.  It will test only the degree to which this
particular system is superior to other similarly correlated systems, ignoring the degree to which
serial correlation in the positions helps the return.

Which is the better approach?  You need to be the judge.  My own feeling is that since a serially
correlated position vector is the intelligent response to a serially correlated market, we want to
give it credit by performing the full MC permutation test, building the null distribution based on
all possible permutations, including those with negligible serial correlation.  The price paid is
susceptibility to the dual correlation problem, an admittedly dangerous situation.  On the other
hand, the price paid for limiting the null distribution to serially correlated positions, aside from
the computational difficulty of doing so, is a test that is so conservative that the component of
success due to producing correlated positions is discounted.  This could so weaken the test that it
becomes worthless.  You pays your money and you takes your choice.

I conclude this section with a plea for more research on this topic.  I don’t have time to do the
extensive testing that would be required to cast more light on this important and confusing
subject.  Here is what I would like to see:  Collect historical returns for a variety of correlated
markets.  Also generate a few synthetic markets having known serial correlation.  Define a
variety of random (hence worthless) serially correlated position vectors.  Then use vast
replications of experiments to assess the degree to which the dual correlation problem impacts
the full Monte-Carlo Permutation Test, as well as the several stationary bootstrap tests.  The
results of these tests would go a long way toward resolving this dilemma.


